
INFLUENCE OF TURBULENT PRANDTL NUMBER ON HEAT TFANSFER OF A FLAT PLATE 

A. Sh. Dorfman UDC 536.24:532.526 

In computations involving heat transfer in turbulent flow past bodies it is neces- 
sary to assume turbulent Prandtl number distribution across the boundary layer. A 
review and comparison of results obtained by differentauthors are given, 
e.g., in [i-5]~ Unfortunately, the existing data are so contradictory that, at 
present, it does not appear to be possible to establish reliably a function that 
determines turbulent Prandtl number distribution across the boundary layer. The 
absence of sufficiently reliable and general results on the distribution of turbu- 
lent Prandtl number led to the result that in the majority of studies conducted 
in earlier years its value was assumed a constant and either close to or equal to 
one. The effect of turbulent Prandtl number on the intensity of heat transfer from 
a flat plate is numerically investigated in the present paper. The thermal, turbu- 
lent boundary layer equation is integrated for this purpose at different values of 
turbulent Prandtl number and results are compared with experimental data. Results 
from [6], where the thermal boundary layer was numerically integrated with Prt = 1 
and compared with experimental data, were used for comparison in the present paper. 
The same numerical integration procedure as in [6] was used here. 

The system of turbulent boundary layer equations is closed with the Mellor-Gibson model 
[7]. According to this model, the turbulent boundary layer is divided into three regions. 
In the inner region, including the laminar sublayer and the turbulent layer:immediately 
close to it, the eddy viscosity ~T is determined in the following form [7, 8] from similarity 
considerations, 

i+-~ =.\~ 0y ' (i) 

where m is the kinematic viscosity coefficient; u and y are the streamwise velocity component 
and the transverse coordinate in the boundary layer. The form of the function f is established 
on the basis of known accurate measurements made by Laufer [7, 8]. 

In the outer region the eddy viscosity as in the majority of other modern simplest 
models is assumed to be independent of the transverse coordinate and is determined by the 
equation 

wT = O.Ot6US*, (2)  

where U is the outer edge velocity; 6* is the displacement thickness. In the midsection of 
the layer Prandtl's equation is used 

~ ~ = ~2y~ IOW Oy I, (3)  

in which the mixing length is assumed to be proportional to the transverse coordinate (x = 
0.4 is Karman's constant). The boundaries between regions are found by equating eddy vis- 
cosity from Eqs. (i) and (2) on the one hand and (3) on the other. 

The above model for eddy viscosity was used in [7, 9] to compute velocity profiles in 
the inner and outer regions of the layer. The inner and outer profiles coincide over a 
certain segment in the intermediate region, completing the velocity profile in the turbu- 
lent boundary layer. The velocity and eddy viscosity distribution across the boundary layer 
in such a case is determined by functions of nondimensional coordinate ~ = y/A that depends 
on Reynold's number Re, = U~*/~ as a parameter (A = 6"/~cf/2, cf is skin friction coefficient). 

It was shown in [i0] that under such conditions and a constant value of turbulent Prandtl number 
the thermal boundary layer equation can be comprehensively used; more details of the method are given 
in [ii]. Characteristic features of computations at large and small values of Prandtl numbers 
associated with the need to consider the nature of damping of fluctuations in the viscous 
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sublayer in the first case and the behavior of eddy viscosity coefficient outside the dy- 

namic layer in the second case are also discussed in [ii]. 

Computations have been carried out for two values of turbulent Prandtl numbers Pr t = 0.5 
and 1,5, four values of Prandtl number Pr = i0-=; i; 102; I03; and three Reynolds numbers 
Re, = l0 s (Re = Ux/w = 2.95.105); l0 s (7.93.107); 109 (2.56"1012). Computational results in 

the form of dependenc e of the coefficient of Reynolds analogy 2St/cf on turbulent Prandtl 
number are sho~m in Fig. 1 (a: Pr = i; b: Pr = 0.01 (continuous line, Scale I), Pr = i00 
(dashed line, Scale II)). The corresponding data for Pr t = 1 are taken from [6]. Computa- 

tions for Pr t = 1 showed [6] that at large Prandtl numbers the product St 2/~cfPr3/4 practical- 
ly does not depend on Reynolds numbers and equals 0.113. The corresponding values for Pr t = 
0.5 and 1.5 are 0.136and 0.096. In view of this, curves for Pr = l0 s similar to those given 
in Fig. 1 are not plotted for other values of Prandtl numbers. 

Computed results are given in Fig. 2 in the form of the ratio St/(St)Prt=1 which deter- 

mines the change in heat transfer with change in Prt, compared to heat transfer calculated 

for Pr t = i. 

It follows from Fig. 2 that an increase in Pr t leads to a reduction and its reduction 
to an increase in heat transfer compared to that at Prt = i, and here an increase in Prt up 
to 1.5 is less appreciable than its reduction to 0.5; turbulent Prandtl number has the most 

appreciable effect when Prandtl number is close to unity, when Pr t = 0.5 the difference in St 
from the corresponding value at Pr t = 1 is a maximum when Pr = i, Re, = 109 and it is 67%, the 
corresponding difference at Pr t = 1.5 is 25%; with an increase in Pr and a reduction in Re the 
effect of turbulent Prandtl number is reduced and when Pr ~ i0 = it happens to be practically 
independent of Pr as well as Re. In this case the ratio St/(St)Prt=1 at Pr = 0.5 becomes 
equal to %1.2, and when Pr t = 1.5 it is %0.85. Comparatively small influence of Pr t at large 
values of Prandtl numbers is explained by the presence of the major portion of the thin ther- 
mal layer in the viscous sublayer. With a decrease in Prandtl number the influence of Prt 
also decreases because of the increasing role of molecular heat conductivity. 

In [6] it was shown that when Pr < 1 computational results from Pr t = 1 are very well 
generalized by using Peclet number Pr = RePr as the independent variable. In this case 
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points belonging to different values of Prandtl and Reynolds numbers are concentrated near 
the curve and lead to a unique dependence. It is seen from Fig. 3 that the same law is ob- 
served even when Pr t # i. For each of the values of turbulent Prandtl numbers the computed 
points for all values of Pr and Re form a unique curve. It follows from Fig. 3 that for 
small values of Peclet number the effect of turbulent Prandtl number is negligible. It in- 
creases with Pe and becomes a maximum when Pe ~ 10 I~ 

A comparison of computed results is given in Fig. 4 for different values of turbulent 
Prandtl number with experimental data for liquid metals [12] and air [13] (Fig. 4a), water 
and oil [4] (Fig. 4b), and also with experimental data related to large values of Prandtl 
number [3] (Fig. 4c). It is seen from Fig. 4 that computed relations obtaine'dat Pr t = 0.5 
and 1.5 limit experimentaldataabove and below. Computed curve obtained for Pr t = 1 passes 
between these curves and agrees much better with experimental data. It is most clearly seen 
at Prandtl numbers close to unity (Fig. 4a) when the effect of turbulent Prandtl number on 
computed results is a maximum (see Fig. 2). At small values of Prandtl number the effect of 
Pr t is small. In this case all three computed curves practically coincide and agree fairly 
well with experimental data (Fig. 4a). At large Prandtl numbers there are a larger number 
of experimentai points between computed curves for Pr t = 1 and 0.5 than between computed 
curves for Pr t = 1 and 1.5 (Fig. 4c). In spite of this, the value of the product St 2/~cfPr3/4 
equal to 0.115, which was found in [3] by equating to experimental data and shown in Fig. 4c, 
agrees best with corresponding computed value 0.113 obtained at Pr t = i. From this and those 
given in Fig. 4c it is possible to consider that at large values of Prandtl numbers the best 
agreement is achieved when turbulent Prandtl number is between 1 and 0.8. 

Thus, in computations of heat transfer in boundary layer on a flat plate it is possible 
to recommend a turbulent Prandtl number equal to unity or somewhat less than unity (at large 
Prandtl numbers). Stanton numbers obtained in this case agree well with experimental data. 
Furthermore, computed results at Pr t = 1.5 and 0.5 agree poorly with experimental data except 
in the region of small Peciet numbers (Pe < 105 ) when computed Stanton number weakly depends 
on the chosen turbulent Prandtl number. 
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It is necessary to emphasize that these results should be considered only as numerical 
recommendations keeping in view that in practice, as shown by a number of studies (see, e.g., 
[3, 14, and 15]), turbulent Prandtl number varies appreciably across the boundary layer, 
especially near the wall when the nature of this dependence is appreciably affected by Prandtl 
number [15], thermal boundary condtions [14], and other factors. 
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